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Riemann Sums and Definite Integrals 
 

-What happens if the intervals aren’t even? A big rectangle here, a smaller 
rectangle there could still work. 
 
- Does it matter, given the amount of rectangles we are using? 
 
-The “long-way” of finding the area under the curve is known as a Riemann 
Sum.  
 
-Consider the case where the number of rectangles increases and the width 
of the rectangle decreases.  
 
As the number of rectangles increase, we say that the norm of the partition 
(or the width of the largest subinterval) decreases. 
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Definite Integrals 
 

If f is defined on the closed interval 
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exists, then f is integrable on 
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$  and the limit is denoted by 
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The limit is called the definite integral of f from a to b. The number a is the 
lower limit of integration, and the number b is the upper limit of integration. 
 
Continuity Implies Integrability 
 

If a function f is continuous on the closed interval 
  
a,b!
"

#
$ , then f is 

integrable on 
  
a,b!
"

#
$ . 

 
Example 
 

Evaluate the definite integral 
  

2x dx
!2

1

"  

 

 
  
!x =

b " a
n

=
3
n

 

 

 
  
c

i
= a + i!x = "2+

3i
n

 

 

  
2x dx

!2

1

" = lim
# $0

f c
i( )#x

i=1

n

%  

 

 
  
= lim

n!"
2 #2+

3i
n

$

%
&

'

(
)

3
n

$

%
&

'

(
)

i=1

n

*  

 

 
  
= lim

n!"

6
n

#2+
3i
n

$

%
&

'

(
)

i=1

n

*  

 

 

  

= lim
n!"

6
n

#2n +
3
n

n n + 1( )
2

$

%

&
&
&

'

(

)
)
)

*

+
,

-,

.

/
,

0,
 

 



ADVANCED PLACEMENT CALCULUS AB  3 

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER 

 
  
= lim

n!"
#12+ 9 +

9
n

$

%
&

'

(
)  

 
  = !3 
 
-This function wasn’t non-negative so it muddles the true definition of area!! 
 
Properties of Definite Integrals 
 

a) 
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Preservation of Inequality 
 

If f is integrable and non-negative on 
  
a,b!
"

#
$  then 
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If f and g are integrable on the closed interval 
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The Definite Integral as the Area of a Region 
 

If f is continuous and non-negative on the closed interval 
  
a,b!
"

#
$ , then the 

area of the region bounded by the graph of f, the x-axis, and the lines 
  x = a  and x = b  is: 
 

  
Area = f x( )
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Properties of Definite Integrals 
 

If f is defined at  x = a , then we define 
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If f is integrable on 
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"

#
$ , then we define 
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If f is integrable on 3 closed intervals determined by a, b, and c, then  
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Fundamental Theorem of Calculus 
 
Consider the connection between the uses of differentiation and definite 
integration. 
 
 Slope    Area 
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If a function f is continuous on 
  
a,b!
"

#
$  and F is an antiderivative of f on 
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#
$  then 
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Notation 
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‘So we don’t need the constant of integration for definite integrals!! 
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Example 
 
Evaluate each definite integral.  
 

  
x2 ! 3( )

1

2

"
# dx  

 

 
  
=

x 3

3
! 3x

"

#
$
$

%

&
'
'1

2

=
8
3
! 6

(

)
*

+

,
- !

1
3
! 3

(

)
*

+

,
- = !

2
3

 

 

  
3 x

1

4

! dx  

 

 

  
= 3 x1 2

1

4

! dx = 3 x 3 2

3 2

"

#
$
$

%

&
'
'

1

4

= 2 4( )3 2
(2 1( )3 2

= 14  

 

  
sec2 x( )

0

! 4

"
# dx  

 

 
  
= tan x( )

0

! 4
= 1 " 0 = 1  

 
Example 
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Rewrite: 
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Example 
 

 
 
Find the area of the region bounded by the graph of   y = 2x2 ! 3x +2 , the 
x-axis, and the vertical lines   x = 0 and x = 2 . 
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